
OAR TESTSUITES DOCUMENTATION

Contents

• What are we testing and How?
• RSpec Ruby Test Framework
• Regular RSpec Testing Method
• The Kameleon way of Testing: Idea
• Testsuite Installation
• The Testsuite Engine Design
• Advantages
• Sample Test Recipe snippet
• Schema
• List of rspectests_lib methods
• List of oarrestapi_lib methods
• Conclusion

 What are we testing and How?
The main aim of this project is to test the available OAR REST APIs to ensure that they are
working as expected without any broken links while calling the APIs for implementing various
functionalities.
A list of available OAR REST APIs is present in the Documentation which can be pulled from
http://wiki-oar.imag.fr/index.php/OAR_API
Both unit testing as well and functional(Scenario) testing will be done on the OAR REST APIs.
So, we currently make available 2 ways of testing the APIs. They are as follows:
1. Regular RSpec Testing
2. Testing using Kameleon Tool, IRB and RSpec

So users of the APIs who are familiar with RSpec Test framework can use the first method of
testing, while those developers who are fond of Kameleon tool and love to write recipes and steps
can pick up the second option for testing the APIs.

In this Wiki, we cover the basics of how testcases can be written, by using both the methods
mentioned above.
Before launching onto the 2 testing methods, let us understand about the RSpec Ruby Testing
Framework which is common in both the methodologies. We cover that next.

 RSpec Ruby Test Framework
Rspec is a behavior driven test development framework developed for Ruby.
Behavior Driven Development(BDD) began its journey as an attempt to better understand and
explain the process of Test Driven Development.
Behavior driven development is an agile software development technique .
RSpec uses simple plain English like statements to write test cases.
In Testsuites project, we use RSpec to carry out unit/scenario testing of the various OAR REST
APIs.
RSpec Documentation with examples of simple scenario testing of OAR APIs can be pulled from
gforge scm - branch/gsoc2010/tests/testsuite/Documentation.

http://wiki-oar.imag.fr/index.php/OAR_API

 Regular RSpec Testing Method
This is the most easiest and quickest way to test the OAR APIs.
Once testing using RSpec framework is clear, one can write very efficient testcases
(testelements)for scenarios/unit functioning of APIs in a few minutes and run them on the fly using
the spec command.
A Testsuite can be made by placing all the test files (must end with _spec.rb) in a spec folder.
By running the command: spec path_to_spec_folder --format specdoc , each test spec file in the
directory will get executed one by one displaying the result for each test file after it is run.

The RSpec Documentation I made, clarifies how this method of testing can be done with examples.
But however for the sake of completeness, I will describe a small example of testing of APIs using
simple RSpec testelements.

Following are testelements to submit a job successfully and check the queue if job has been
submitted. Note: jobid is made global so that all testelements can test APIs that require this jobid.
Also submit_job and full_job_details are methods of library oarrestapi that calls the POST/GET
APIs which are called using the object of the library class. Read RSpec Documentation for more
details. Assume the elements are from file testspec.rb.

 #Submitting a job
 it "should submit a job successfully " do
 jhash = { 'resource' => "/nodes=1/core=1" , 'script' => "ls;pwd;whoami;sleep
60" }
 begin
 @obj.submit_job(jhash)
 $jobid = @obj.jobstatus['id'].to_s
 rescue
 puts "#{$!}"
 exit
 end
 $!.should == "" #Usually returns NULL or empty string
 @obj.jobstatus['status'].to_s.should == "submitted"
 end

 #Checking the queue (Can use GET /jobs to check) immediately.
 it "should contain jobid in queue of created job" do
 begin
 @obj.full_job_details
 rescue
 puts "#{$!}"
 exit
 end
 @obj.jobarray['items'] do |value|
 if value['job_id'] == $jobid
 @c=1
 end
 end
 $!.should == nil
 @c.should == 1
 end

The testelement passes only if each should or should_not methods inside it are succeeding. If one
fails, the testelement fails.
Running using spec : $ spec testspec.rb --format specdoc
OarApis
- should submit a job successfully
- should contain jobid in queue of created job
Finished in 03.062151 seconds

2 examples, 0 failures

Thus tests can be written and run easily as shown above.
The next method is for Kameleon fans and is described elaborately in the sections that follow.

 The Kameleon way of Testing: Idea
Main Tools used in this Idea:

• Kameleon
• Interactive Ruby (IRB)
• RSpec Ruby Gem - A Ruby BDD Testing framework

Tests will be written in simple yaml file format. Kameleon engine can be used to parse the yaml test
files.
Recipe Test file will contain macrosteps and microsteps.
The actual testing is done using the RSpec Testing Framework internally.
An IRB Session is opened up in one of the microsteps. Named FIFO pipes are used for giving input
and collecting back output/error to and from the IRB respectively. A library of RSpec test elements
of the REST OAR APIs along with few scenario testing are made. This library is loaded in IRB in
one of the microsteps and testings mapped with the corresponding macrosteps are run in IRB.
Ruby commands to load RSpec test library and to run the tests are given as input to the IRB via the
named FIFO pipe. Similarly, output/errors of these tests run in IRB are collected back in other
named pipes.

Testsuite Installation

 The Testsuite Engine Design
An overall tentative architecture of the testsuite has been drawn and committed to the Inria SVN
Repository (gsoc2010/tests/testsuite/Design).

http://wiki-oar.imag.fr/index.php/Image:Testsuite_installation.jpg

 Advantages
• Test files can be easily written as it is in the standard YAML format.
• Usage of Kameleon engine will make parsing of test files quicker, powerful and efficient.

All features of kameleon is derived here.
• Inner test cases made using RSpec, which is easier to learn, code; takes just few minutes to

add a new spec test element to the rspec test library.
• Since each test is carried out in IRB through kameleon, debugging is easy at each step.

 Sample Test Recipe snippet
A sample steps of test recipe will tentatively look like:

steps:

- irb #Initializes IRB
- load_lib_create_object #Load rspectests_lib and creates object of

http://wiki-oar.imag.fr/index.php/Image:Testsuite_Design.jpg

the lib
- unit_tests:
 - test_submit_job #Test post /jobs REST API submitted job successfully
 - test_get_job #Test get /jobs API is getting details of job
 - test_delete_job #Test delete /jobs API is fine
 - test_get_version #Test GET /version is working fine
 - test_get_timezone #Test GET /timezone is working fine
#
Scenario Testing
#Test Scenario 1: Submit a job, check if submitted, Delete job, Check if deleted
- scenario1:
 - submit_job
 - test_if_submitted
 - delete_job
 - test_if_deleted
#- print_output
#Only 1 print_output should be there in a recipe. It should be put only after
all the tests/scenarios
#
#Test Scenario 2: Test to Submit job, Hold job, Resume job
- scenario2:
 - submit_job_running
 - test_if_submitted
 - hold_job_running
 - test_if_job_held
 - resume_job
 - test_if_job_resumed
- print_output #Print output of tests

The irb.yaml macrostep:
irb:

- create_pipes:
 #Named Fifo pipe to store the output produced after testing in IRB
 - exec_appliance: mkfifo irb_stdout
 #Named Fifo pipe which accepts input for IRB
 - exec_appliance: mkfifo irb_stdin
 #Named Fifo pipe to log the errors produced after testing in IRB
 - exec_appliance: mkfifo irb_stderr
- start_irb:
 - exec_appliance: irb <irb_stdin >irb_stdout &
 - exec_appliance: IRB_PID=$!
- bash_function:
 - exec_appliance: function write_irb(){ echo "$1" > irb_stdin; }
- clean:
 - exec_appliance: echo "kill $IRB_PID" >> $$workdir/clean.sh
 - exec_appliance: echo "rm -f $$workdir/chroot/irb_stdout" >> $
$workdir/clean.sh
 - exec_appliance: echo "rm -f $$workdir/chroot/irb_stdin" >> $
$workdir/clean.sh
 - exec_appliance: echo "rm -f $$workdir/chroot/irb_stderr" >> $
$workdir/clean.sh

This macrostep creates named pipes for input, output and error and initializes a session of IRB. The
clean step adds rm -f commands that delete pipes into clean.sh

The load_lib_create_object step contains the following microsteps:

load_lib_create_object:

- load_lib_create_object:

 - load_libs:
 - exec_appliance: write_irb "require '$$rpsec_lib_path'"
 - create_objects:
 - exec_appliance: write_irb "obj = Tests.new($$apiuri)"

Here, the microsteps uses 2 Global variables declared in the Kameleon recipe file which are
referenced using $$.They are:
RSpec Library Path and Apiuri Path.
rpsec_lib_path: /home/kameleon/lib/rspectests_lib
apiuri: "http://kameleon:kameleon@localhost/oarapi-priv"

The test_submit_job macrostep will contain the following microsteps:

test_submit_job:

- test_submit_job:
 - exec_appliance: write_irb "jhash = { 'resource' => \"/nodes=1/core=1\" ,
'script' => \"ls;pwd;whoami\" }"
 - exec_appliance: write_irb "obj.test_submit_job(jhash)"

Here, the load_lib_create_object step imports the RSpec Test library file and creates an object of
RSpec class, Test. It uses this object to explicitly call the test_submit_job() ruby method which
contains the RSpec test element and runs the test element separately.

The scenario1 macrostep will contain the following microsteps:

scenario1:

- submit_job:
 - exec_appliance: write_irb "jhash = { 'resource' => \"/nodes=1/core=1\" ,
'script' => \"ls;pwd;whoami;sleep 60\" }"
- test_if_submitted:
 - exec_appliance: write_irb "obj.test_submit_job(jhash)"
 - exec_appliance: write_irb "jid = obj.jobid"
 - exec_appliance: write_irb "puts \"Submitted job \"+jid.to_s"
 - exec_appliance: write_irb "obj.test_job_in_queue(jid)"
- delete_job:
 - exec_appliance: write_irb "puts \"Deleting job \"+jid.to_s"
 - exec_appliance: write_irb "puts jid.to_s"
- test_if_deleted:
 - exec_appliance: write_irb "obj.test_jobs_delete(jid)"
 - exec_appliance: write_irb "obj.test_job_notin_queue(jid)"
 - exec_appliance: write_irb "puts \"Scenario1 successfully tested \""

The print_output macrostep contains the following microsteps:

print_output:

- print:
 - exec_appliance: write_irb "exit"
 - exec_appliance: sleep 1
 - exec_appliance: cat irb_stdout|tee output_file
 - exec_appliance: echo "Results of the Testsuite Run"
 - exec_appliance: grep -C 1 "OarApis" output_file
 - exec_appliance: grep failure output_file>numexamples
 - exec_appliance: cat numexamples|wc -l|sed 's/^/Total Number of examples
run:/'
 - exec_appliance: awk -F '[,]' '{static s; if($4 == 0) s++}; END { print s }'
numexamples|sed 's/^/Number of Successes:/'
 - exec_appliance: echo "Time taken to run each tests"
 - exec_appliance: grep seconds output_file|tee testtime
 - exec_appliance: echo "Total Time taken:"
 - exec_appliance: awk '{ static timesum; timesum+=$3 }; END { print timesum }'

http://kameleon:kameleon@localhost/oarapi-priv

testtime

Only 1 print_output microstep should be present in the recipe file. If 2 scenario testings needs to be
done,place print_output step after 2nd scenario. This will contain the output of tests of both the
scenarios.

Notice here that print_output microstep is rather big. The intention was to add more creativity in the
output after the test run. It can also be rather small and simple; depends on the requirements of the
tester.

 Schema

http://wiki-oar.imag.fr/index.php/Image:Irb_config.jpg
http://wiki-oar.imag.fr/index.php/Image:Irb_IO.jpg

http://wiki-oar.imag.fr/index.php/Image:Rspectestslib.jpg

List of rspectests_lib methods
The rspectests_lib currently contains the following methods/rspec test elements. As and when more
lib methods are required, it can be easily added to the library. The OAR REST APIs are called by
this library using the oarrestapi_lib library. For writing tests, one has the flexibility to require either
rspectests_lib or oarrestapi_lib based on their specific requirements.

Class: Test

Methods:

 1. test_get_version - Testing the GET /version REST API
 2. test_get_timezone - Testing the GET /timezone REST API
 3. test_get_jobs_details - Testing the GET /jobs/details REST API
 4. test_get_running_jobs - Testing the GET /jobs REST API
 5. test_get_jobs_id (jid) - Testing the GET /jobs/<ID> REST API
 6. test_job_in_queue(jid) - Test to check if job is there in queue
GET /jobs/details API
 7. test_job_notin_queue(jid) - Test to check if job is deleted from
queue using GET /jobs/details API

http://wiki-oar.imag.fr/index.php/Image:Overall_Flow.jpg

 8. test_get_jobs_table - Testing the GET /jobs/table REST API
 9. test_submit_job (jhash) - Testing the POST /jobs REST API
10. test_jobs_delete_post (jid) - Testing the POST /jobs/id/deletions/new
REST API
11. test_jobs_delete (jid) - Testing the DELETE /jobs/<id> REST API
12. test_get_resources - Testing the GET /resources REST API
13. test_get_resources_full - Testing the GET /resources/full REST API
14. test_job_rholds (jid) - Testing the POST /jobs/<id>/rholds/new
REST API
15. test_job_hold (jid) - Testing the POST /jobs/<jobid>/holds/new
REST API
16. test_job_resumption (jid) - Testing the POST
/jobs/<id>/resumption/new REST API
17. test_job_update (jid, actionhash) - Testing POST /jobs/<id>/ API (deleting
use when browsers dont support DELETE)
18. test_if_job_delete_updated (jid) - Testing POST /jobs/<id>/ to see if job
is updated with actionhash, Call this after calling above method
19. test_job_checkpoint (jid) - Testing the POST
/jobs/<jobid>/checkpoints/new REST API
20. test_job_running (jid) - Testing if job is currently running

 List of oarrestapi_lib methods
The rspectests_lib call the OAR REST APIs through the oarrestapi_lib library.

Class: OarApi

Methods:

 1. get(api,uri) - GET REST OAR API; Function to get
objects from the api
 2. post(api,uri,j) - POST REST OAR API; Function to
create/delete/hold/resume objects through the api
 3. delete(api, uri) - DELETE REST OAR API; Function to Delete
objects through the api
 4. oar_version - Gives version info & Timezone about OAR and OAR
API/Server.
 5. oar_timezone - Gives the timezone of the OAR API
server.
 6. full_job_details - List the current jobs & some details
like assigned resources
 7. run_job_details - List currently running jobs
 8. specific_job_details(jobid) - Get Details of a specific job
 9. dump_job_table - Dump the jobs table (only current jobs)
10. submit_job(jhash) - Submits job
11. del_job(jobid) - Delete job - POST /jobs/id/deletions/new
12. send_checkpoint(jobid) - Send checkpoint signal to a job
13. hold_waiting_job(jobid) - Hold a Waiting job
14. hold_running_job(jobid) - Hold a Running job
15. resume_hold_job(jobid) - Resume a Holded job
16. send_signal_job(jobid, signo) - Send signal to a job with signalno.
17. update_job(jobid, actionhash) - Update a job
18. resource_list_state - Get list of Resources and state
19. list_resource_details - Get list of all the resources and all
their details
20. specific_resource_details(jobid) - Get details of resources identified by
an ID
21. resource_of_nodes(netaddr) - Get details about the resources
belonging to the node identified by network address
22. create_resource(rhash) - Create Resource
23. statechange_resource(jid,harray) - Change the state of resources of a job

24. delete_job(jobid) - Delete or kill a job using DELETE API
25. delete_resource(resid) - Delete the resource identified by id
26. delete_resource_cpuset(node,cpuid)- Delete the resource corresponding to
cpuset id on node node.

Conclusion

Thus, the Testsuites are very flexible and highly scalable. Any type of test cases can be thought of
and coded straightaway. The Kameleon method helps in writing highly readable testcase steps ,
macrosteps and microsteps and the Regular Rspec Method of testing helps in writing easy testcases
and scenarios quickly.

The oarrestapi_lib as well as rspectests_lib can be further enhanced as and when required
introducing new test functions.

 SUBMITTED BY NARAYANAN K AS PART OF GSOC-2010 TESTSUITES PROJECT

	OAR TESTSUITES DOCUMENTATION
	Contents
	 What are we testing and How?
	 RSpec Ruby Test Framework
	 Regular RSpec Testing Method
	 The Kameleon way of Testing: Idea
	Testsuite Installation
	 The Testsuite Engine Design
	 Advantages
	 Sample Test Recipe snippet
	 Schema
	List of rspectests_lib methods
	 List of oarrestapi_lib methods
	Conclusion

